



# PERRY JOHNSON LABORATORY ACCREDITATION, INC.

## *Certificate of Accreditation*

*Perry Johnson Laboratory Accreditation, Inc. has assessed the Organization of:*

### ***RE-SOL Reliable Solutions & Services***

***1771 Harmon Road, Auburn Hills, MI 48326***

*and hereby declares that the Organization is accredited in accordance with  
the recognized International Standard:*

**ISO/IEC 17025:2017**

Whereby, technical competence has been confirmed for the associated scope supplement, in the fields of:

### ***Electrical, Mechanical, and Thermodynamic Calibration (As detailed in the supplement)***

Accreditation claims for conformity assessment activities shall only be made from the addresses referenced within this certificate and shall apply solely to those activities identified in the related scope. This Accreditation is granted subject to the Accreditation Body rules governing the Accreditation referred to above, and the Organization hereby commits to observing and complying with those rules in their entirety.

For PJLA:

Tracy Szerszen  
President

Perry Johnson Laboratory  
Accreditation, Inc. (PJLA)  
755 W. Big Beaver, Suite 1325  
Troy, Michigan 48084

*Initial Accreditation Date:*

May 30, 2014

*Issue Date:*

November 07, 2025

*Expiration Date:*

January 31, 2028

*Accreditation No.:*

55952

*Certificate No.:*

L25-814

*The validity of this certificate is maintained through ongoing assessments based  
on a continuous accreditation cycle. The validity of this certificate should be  
confirmed through the PJLA website: [www.pjilabs.com](http://www.pjilabs.com)*



# Certificate of Accreditation: Supplement

## RE-SOL Reliable Solutions & Services

1771 Harmon Road, Auburn Hills, MI 48326

Contact Name: Andrew Wiggle Phone: 248-270-7777

*Accreditation is granted to the facility to perform the following conformity assessment activities:*

| FIELD OF CALIBRATION | MEASURED INSTRUMENT, QUANTITY OR GAUGE | RANGE (AND SPECIFICATION WHERE APPROPRIATE) | EXPANDED MEASUREMENT UNCERTAINTY ( $\pm$ ) <sup>1</sup> | CALIBRATION EQUIPMENT AND REFERENCE STANDARDS USED     | CALIBRATION MEASUREMENT METHOD OR PROCEDURES USED | FLEX CODE | LOCATION OF ACTIVITY |
|----------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------|----------------------|
| Electrical           | Pressure Transducers (Voltage)         | 1 V to 20 V                                 | 0.003 5 V                                               | Heise PTE-1                                            | Procedure PRE_CAL -1                              | F1, F3    | F, O                 |
| Electrical           | Pressure Transducers (Current)         | 1 mA to 20 mA                               | 0.007 mA                                                | Heise PTE-1                                            | Procedure PRE_CAL -1                              | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 0.001 L/min to 0.01 L/min                   | 0.001 7 mL/min                                          | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure FM_CAL1                                 | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 0.01 L/min 0.15 L/min                       | 0.017 mL/min                                            | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure FM_CAL1                                 | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 0.15 L/min to 10 L/min                      | 0.62 mL/min                                             | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure FM_CAL1                                 | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 1 g/min to 10 g/min                         | 0.003 8 g/min                                           | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure FM_CAL1                                 | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 10 g/min to 100 g/min                       | 0.009 g/min                                             | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure FM_CAL1                                 | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 100 g/min to 10 000 g/min                   | 0.1 g/min                                               | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure DIV_CAL1                                | F1, F3    | F, O                 |
| Mechanical           | Mechanical Liquid Flow Meters          | 10 000 g/min to 20 000 g/min                | 0.73g/min                                               | Class F1 Weights XP8002S Balance Mercury OC14T5A Timer | Procedure DIV_CAL1                                | F1, F3    | F, O                 |
| Mechanical           | Pressure Transducers                   | 20 psi to 200 psi                           | 0.063 psi                                               | Heise PTE-1 HQS-2 200 psi                              | Procedure PRE_CAL -1                              | F1, F3    | F, O                 |



# Certificate of Accreditation: Supplement

## RE-SOL Reliable Solutions & Services

1771 Harmon Road, Auburn Hills, MI 48326

Contact Name: Andrew Wiggle Phone: 248-270-7777

*Accreditation is granted to the facility to perform the following conformity assessment activities:*

| FIELD OF CALIBRATION | MEASURED INSTRUMENT, QUANTITY OR GAUGE | RANGE (AND SPECIFICATION WHERE APPROPRIATE) | EXPANDED MEASUREMENT UNCERTAINTY ( $\pm$ ) <sup>1</sup> | CALIBRATION EQUIPMENT AND REFERENCE STANDARDS USED                         | CALIBRATION MEASUREMENT METHOD OR PROCEDURES USED | FLEX CODE | LOCATION OF ACTIVITY |
|----------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|-----------|----------------------|
| Mechanical           | Liquid Fluids Sensor                   | 500 g/L to 1 000 g/L                        | 170 mg/L                                                | Gravimetric Method<br>Weights Volumetric Flask, Balance, Temperature Meter | Procedure MASS_CAL-1                              | F1, F3    | F, O                 |
| Mechanical           | Fluid Density Sensor                   | 500 g/L to 1 000 g/L                        | 260 mg/L                                                | Reference Fluids                                                           | Procedure DENS_CAL-1                              | F1, F3    | F, O                 |
| Thermodynamic        | Fluid Temperature Sensor               | 0 °C to 50 °C                               | 0.22 °C                                                 | Omega HH40 Series thermistor thermometer                                   | Procedure DENS_CAL-3                              | F1, F3    | F, O                 |

1. The CMC (Calibration and Measurement Capability) stated for calibrations included on this scope of accreditation represents the smallest measurement uncertainty attainable by the laboratory when performing a more or less routine calibration of a nearly ideal device under nearly ideal conditions. It is typically expressed at a confidence level of 95 % using a coverage factor k (usually equal to 2). The actual measurement uncertainty associated with a specific calibration performed by the laboratory will typically be larger than the CMC for the same calibration since capability and performance of the device being calibrated and the conditions related to the calibration may reasonably be expected to deviate from ideal to some degree.
2. The laboratories range of calibration capability for all disciplines for which they are accredited is the interval from the smallest calibrated standard to the largest calibrated standard used in performing the calibration. The low end of this range must be an attainable value for which the laboratory has or has access to the standard referenced. Verification of an indicated value of zero in the absence of a standard is common practice in the procedure for many calibrations but by its definition it does not constitute calibration of zero capacity.
3. Location of activity:
 

| Location Code | Location                                                                         |
|---------------|----------------------------------------------------------------------------------|
| F             | Conformity assessment activity is performed at the CABs fixed facility           |
| O             | Conformity assessment activity is performed onsite at the CABs customer location |
4. Measurement uncertainties obtained for calibrations performed at customer sites can be expected to be larger than the measurement uncertainties obtained at the laboratories fixed location for similar calibrations. This is due to the effects of transportation of the standards and equipment and upon environmental conditions at the customer site which are typically not controlled as closely as at the laboratories fixed location.